Advanced Airway Management in Emergency Care Settings

Michael D. Gooch, DNP, APRN, CCP, FAASTN, FAANP, FAEN Emergency-Flight NP – Vanderbilt University Medical Center Assistant Professor of Nursing – Vanderbilt University

Disclosures

I have nothing to disclose.

Objectives

At the completion of this presentation, the participant will be able to:

- Review key components of the airway assessment to help predict the difficult airway.
- Modify current airway management practices to include positioning, passive oxygenation and proper preoxygenation techniques.
- Recall the indications and benefits of push dose pressors during intubation.
- Modify plans of care to support hemodynamic stability during and after intubation.

Assessment of the Airway

Is it patent?

Any abnormal sounds?

Is the patient vocalizing?

Is there an obstruction or potential obstruction?

- Tongue
- Dentures/Teeth
- Vomit, Blood
- Edema
- Foreign bodies

Assessment of Breathing

Rate	Chest Wall Integrity
Quality	Pulse Oximetry
Depth	Capnography
Accessory Muscle Use	Mental Status
Breath Sounds	

Indications for Intubation

Apnea

Airway Obstruction

Airway Protection

Respiratory Insufficiency/Failure

Hemodynamic Instability

USE A Checklist

doi: 10.1016/j.amj.2023.12.010 doi: 10.1186/s13049-014-0041-7

Airway Checklist

- Pre-Planning & Roles Confirmed
- Drug Selection & Appropriate Dosing
- Failed Airway Plan Verbalized

Preparation

- Hemodynamics Optimized
- Equipment & IV/IO in Place

Pre-Oxygenation & Position

- High Flow O₂ & NO DESAT
- HOB Elevated to 30°

Equipment/Procedure

- BVM, OPA, PEEP Valve
- ETT & Bougie Ready
- Suction ON & Consider SALAD
- Back Up Devices Immediately Available

Intubation

- SpO₂ Bail Out Threshold Set
- Progressive VL with Visualization Through Cords

Placement Confirmation

ETCO₂ Attached & Lung Sounds Confirmed

Post Intubation Management Plan

- ETT Secured & OG Tube Inserted
- Analgesia & Sedation
- Long Term Paralytic Considered

P's of RSI

Preparation

Pre-oxygenate

Pre-intubation optimization

Paralysis with Sedation

Positioning Passing the tube Proof of placement Post intubation management

Preparation

Always assume this patient will be a difficult airway and have a full stomach

Will you be able to perform a successful surgical airway, if needed?

Prepare equipment

Do an airway assessment

LEMON

Look at face and neck anatomy, is it normal?

Evaluate the 3-3-2 rule

- $^{\circ}\,$ 3 of the patient's fingers between their upper and lower incisors
- 3 fingers along the mandible from the chin posteriorly
- 2 fingers from the laryngeal prominence to the floor of the mouth

Image Credits: Michael Gooch

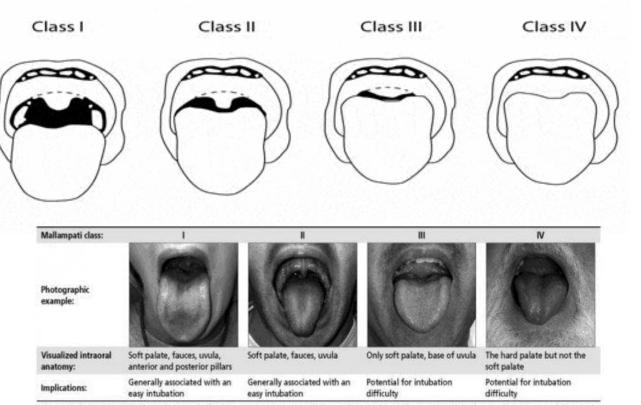
commons.wikimedia.org/wiki/File:Pittrogers-danks_syndrome.jpg (CC BY 2.0)

LEMON

Look at face and neck anatomy, is it normal?

Evaluate the 3-3-2 rule

- $^\circ\,$ 3 of the patient's fingers between their upper and lower incisors
- $^{\circ}\,$ 3 fingers along the mandible from the chin posteriorly
- 2 fingers from the laryngeal prominence to the floor of the mouth


Mallampati

Obstruction, is there one present?

Neck mobility

Mallampati

Low Utility with Emergent Airway Management

*Based on references 16-19, 21. The Mallampati classification compares tongue size with the oropharyngeal space. To correctly perform the test, the patient must fully open the mouth and extend the tongue.

litfl.com/airway-assessment (CC BY-SA 4.0)

HEAVEN

doi.org/10.1186/s13049-019-0614-6 doi.org/10.1016/j.jemermed.2017.12.005 doi.org/10.1016/j.amj.2017.04.001

Hypoxemia – $SpO_2 \le 93\%$ at the time of initial laryngoscopy

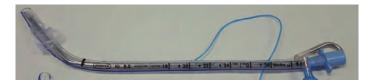
Extremes of size – pediatric patient ≤ 8 years of age or clinical obesity

Anatomic challenges – any structural trauma or abnormality or foreign body that is anticipated to limit laryngoscopic view

Vomit/blood/fluid – clinically significant fluid noted in the pharynx/hypopharynx prior to laryngoscopy

Exsanguination – suspected anemia, either chronic or acute, raises concerns about limiting safe apnea times

Neck mobility issues – limited cervical range-of-motion


Pediatrics

Anatomical Differences

- Larynx is more anterior and cephalad
- $^{\circ}$ The epiglottis is U shaped and protrudes more
- The narrowest portion of the airway is at the cricoid cartilage

Sizing ET tubes

- Weight based resuscitation tape
- \circ (Age / 4) + 3.5 = cuffed tube size
- The patient's little finger or nare

www.researchgate.net/publication/313781180_Stylet_a ngulation_for_routine_endotracheal_intubation_with_ McGrath_videolaryngoscope (CC BY-NC 4.0)

Preparation

Equipment

- Laryngoscope &/or Videoscope
- ETT
- Stylet &/or **Bougie**
- BVM w/ OPA & PEEP valve
- Suction
- ETCO₂ device
- Securing device
- Back up device(s)

Position the patient

- C-Spine control, if needed
- Head of bed up
 - Towel rolls, blankets, pillows under the shoulders/neck, if needed

Monitoring equipment

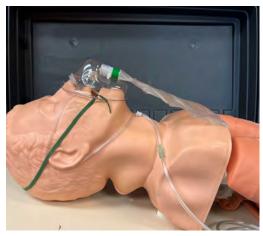
- ECG
- NIBP
- SpO₂
- ETCO₂

Pre-oxygenation

Elevate HOB

High flow O_2 via NRB for 3-5 minutes provides a nitrogen washout of the lungs

Avoid positive pressure ventilation, if possible


O₂ 15L via N/C (NO DESAT, ApOx)

• HFNC may be better

If needed, consider NiPPV or BVM w/ PEEP

What is your SpO₂ goal?

doi: 10.1016/j.annemergmed.2011.10.002 doi: 10.1111/acem.12931 doi: 10.1097/00000542-200506000-00009 Image Credits: Michael Gooch

Airway Adjuncts

Size – measure from the corner of the mouth to the angle of the mandible

Insertion – depress tongue with a tongue blade or rigid suction, insert over tongue Size – measure from the nose to the angle of the mandible

Insertion – lubricate, then insert beveled edge against the nasal septum

Contraindications

Contraindications

Image Credit: Michael Gooch

BVM – Which is Best?

Least Effective

It Works

The **BEST**

doi: 10.1007/s12630-019-01394-9

Image Credits: Michael Gooch

ROMAN

Patients who are Difficult to Mask Ventilate

- Radiation/Restriction (poor lung compliance)
- Obese/Obstruction/OSA
- Mask seal/Male/Mallampati
- Age > 55 years
- No teeth

How Should the Patient be Positioned?

Ear-to-Sternal Notch

www.emdocs.net/novel-tips-airway-management (CC BY 4.0)

Why is Pre-ox so Important?

Davis, Hwang, & Dunford (2008)

EMS - Lower SpO₂ values were associated with a faster rate of SpO₂ decline, with an inflection point occurring at 93%. The rate of desaturation to hypoxemia with intubation attempts initiated with SpO₂ ≤ 93% was much higher than with SpO₂ > 93% (100% vs. 6%, p < 0.01).

Bodily et al. (2016)

ED - 1 in 3 patients undergoing RSI experienced a desaturation for a median duration of 80 seconds. Preintubation SpO₂ < 93% (OR 5.1; 95% CI 2.3 - 11.0), multiple intubation attempts (OR 3.4), and prolonged intubation time (OR 2.7) are independently associated with oxygen desaturation.

Pre-intubation Optimization

How are their hemodynamics?

Shock Index (SI) – Adults

- HR / SBP
- 0.5-0.6 = normal
- > 1 = critical shock state

Shock Index, Peds Adjusted (SIPA)

- Ages 4-16
- Max HR / minimum SBP
- Compared to normal values for age

"Resuscitate before you Intubate"

- Volume/Blood
- Injury management
 - Pelvis
 - Tension pneumothorax
- Push dose pressors
 - Epinephrine 5-20 mcg IV *
 - Phenylephrine 100-200 mcg IV *

* = off label use

Premedications

Lidocaine 1.5 mg/kg IV *

- Most no longer recommend or use
- May blunt sympathetic response & ICP spike
- Must be given at least 3 mins prior to induction

Fentanyl 1 mcg/kg IV *

• May blunt sympathetic response in stable patients

Atropine 0.02 mg/kg IV

- Peds < age 1 to prevent bradycardia
- Minimum dose 0.1 mg

Induction

Etomidate

- \circ 0.3 mg/kg IV
 - Consider half dose in shock states
- Ultra short acting hypnotic
- Onset: < 1 minute
- Duration: 3-5 mins
- Minimal, if any effect on cardiovascular system
- May reduce ICP
- May suppress cortisol secretion, not intended for repeated doses
- May cause trismus

Induction

Ketamine *

- 1-2 mg/kg IV; 2-4 mg/kg IM
- Onset: 1-5 mins
- Duration: 5-30 mins
- Dissociative agent with analgesic properties
- Catecholamine release
 - Bronchial relaxation
- May consider administration with atropine or glycopyrrolate to help with increased salivation
- Contraindicated with ischemic events and hypertensive crisis
- May cause emergence nightmares, administration with a benzodiazepine may limit this effect

Etomidate v. Ketamine

Wunsch et al. (2024)

doi: 10.1164/rccm.202404-0813OC

1,689,945 patients who were intubated and admitted to an ICU for mechanical ventilation

43.7% received etomidate, with propensity score matching to ketamine

Hospital Mortality

- Etomidate v. ketamine, 21.6% v. 18.7%
- Absolute risk difference, 2.8%, 95% Cl, 2.1% - 3.6%
- aOR 1.28, 95% CI 1.21 1.34
- Use of corticosteroids did not impact mortality

Upchurch et al. (2017)

doi:

10.1016/j.annemergmed.2016.08.009

968 trauma patients requiring intubation in the ED

- Etomidate = 526
- Ketamine = 442

Hospital Mortality

- Etomidate v. ketamine, 17.3% v. 20.4%
- aOR 1.41, 95% CI 0.92-2.16
- Similar ICU-free and ventilator-free days in each group

Induction

Propofol *

- \circ 1.5 mg/kg IV
- Onset: < 1 min
- Duration: 3-5 mins
- Should be avoided in hypotensive or unstable patients
- No longer contraindicated with egg or soy allergies
- May be associated with more complications when used for emergent RSI

Midazolam *

- \circ 0.1 mg/kg IV/IM
- Onset: 1-5 mins
- Duration: 2-6 hrs
- Associated with higher risk for hypotension and respiratory depression

* = off label use

Neuromuscular Blockade (NMB)

Succinylcholine

- 1-2 mg/kg IV; 3-4 mg/kg IM
- Onset: 1-2 minutes
- Duration: 8-10 minutes
- Depolarizing muscle paralytic
- May cause bradycardia in pediatrics
- Avoid in patients with history of malignant hyperthermia and known or suspected hyperkalemia
 - Chronic renal disease
 - Major burns > 24 hours old
 - Major crush injuries

Neuromuscular Blockade (NMB)

Rocuronium

- 0.8-1.5 mg/kg IV/IM
- Onset: 1-2 minutes
- Duration: 20-40 minutes
- Nondepolarizing muscle paralytic
- Alternative to succinylcholine

Keep It Simple

- 1.5 mg/kg for IV induction
 - Ketamine
 - Propofol
 - Succinylcholine
 - Rocuronium

Now Let's Do This

Do a Time Out

Re-run a checklist

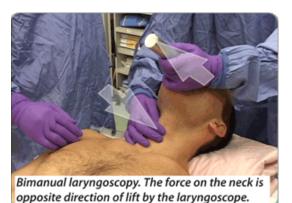
What are your back up plans?

What is your bail out point?

Position the patient

Give meds

Wait


Open c-collar and do manual inline, if applicable

Oral Intubation

 Cric Pressure (Sellick's Maneuver)

www.researchgate.net/figure/Sellick-maneuver-The-application-ofpressure-to-the-cricoid-cartilage_fig3_309818535 (CC BY-NC 3.0) ELM (External Laryngeal Manipulation)

www.emcurious.com/blog-1/2014/11/19/modifiedbimanual-laryngoscopy (CC BY 4.0)

Suction

Always lead with suction

Suction

Assisted

Laryngoscopy

Airway

Decontamination

doi: 10.1016/j.resplu.2020.100005 doi: 10.1016/j.amj.2019.10.005 doi: 10.5811/westjem.2016.9.30891

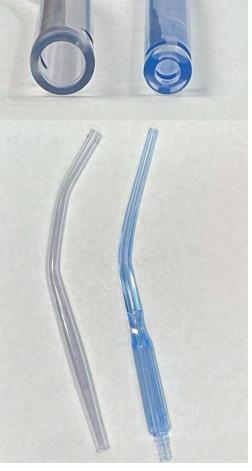
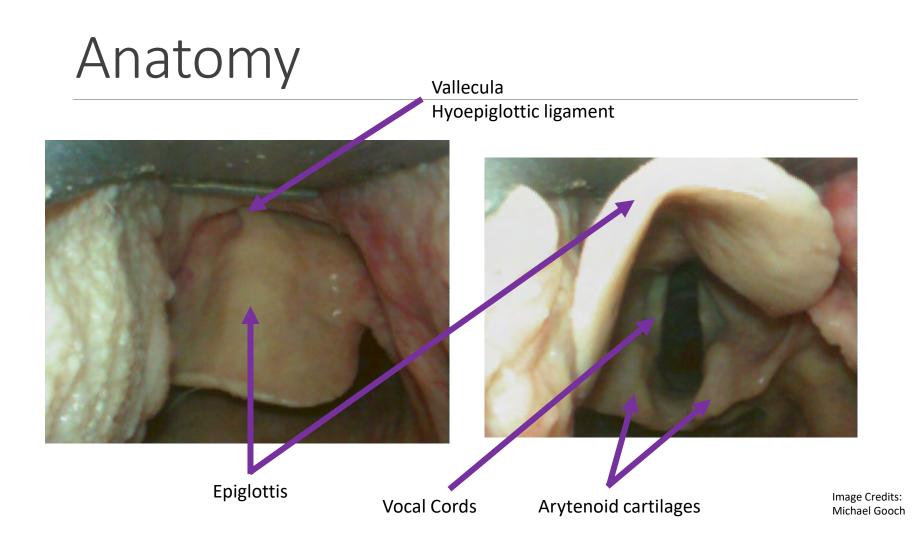
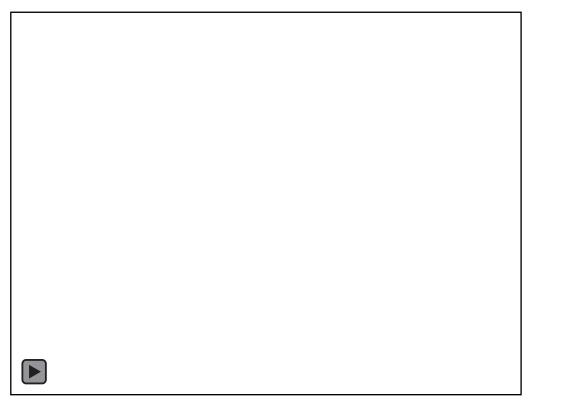




Image Credits: Michael Gooch

Progressive Laryngoscopy

Video Credit: Michael Gooch

Why Do Progressive Laryngoscopy?

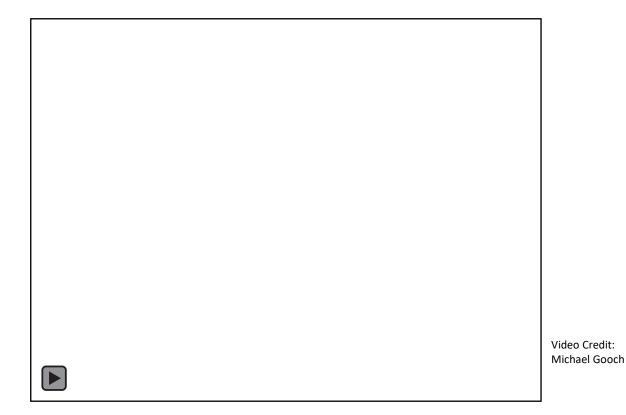

To Avoid This

Image Credits: Michael Gooch

Bougie Intubation

Proof of Placement

- Visualize the tube passing through the cords
- Absence of epigastric sounds
- **Bilateral lung sounds**
- ETCO₂ qualitative and/or quantitative measurement
- Esophageal detector device
- Chest wall excursion

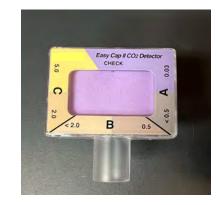
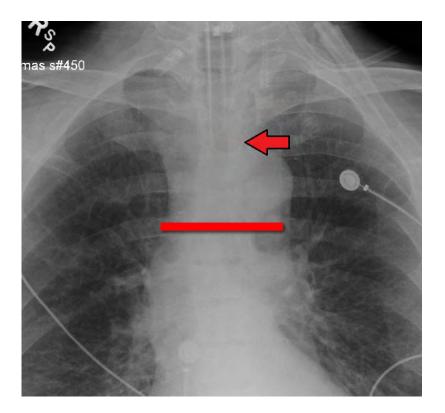
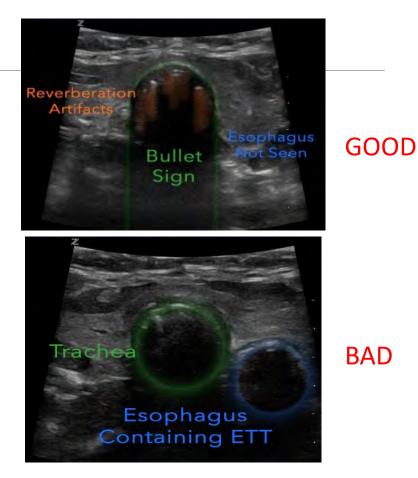



Image Credits: Michael Gooch

Properly Placed ETT



commons.wikimedia.org/wiki/File:ETtube GoodPosition.png (CC BY-SA 4.0)

Ultrasound

rebelem.com/pocus-for-endotracheal-tube-confirmation (CC BY-NC-ND 3.0)

Troubleshooting the Airway

Displaced

Obstructed

Pneumothorax

Equipment

What if you Are Not Successful?

What is their SpO₂?

- If needed, ventilate and re-oxygenate
- Mask ventilation works
 - Do not forget the OPA/NPA & PEEP valve

Change something about your next attempt

Let the drugs wear off?

Sugammadex can be used to reverse rocuronium and vecuronium only

Consider an extraglottic device

Ask for HELP

Post Intubation Management

Secure the ETT

Long term sedation

- Midazolam
 - 0.1 mg/kg IV
 - 0.02-0.1 mg/kg/hr IV
- Ketamine
 - 1-2 mg/kg IV
 - 0.1-0.5 mg/min IV
- Propofol
 - 5-50 mcg/kg/min IV

- Lorazepam *
 - ° 0.1 mg/kg IV
 - Onset: 1-5 mins

Analgesia

- Ketamine *
- Fentanyl *
 - 1 mcg/kg IV
 - 0.5-1.5 mcg/kg/hr IV

* = off label use

Post Intubation Management

Long term paralytics – always with sedation

- Rocuronium
- Vecuronium
 - 0.1 mg/kg IV
 - Onset: 2-3 minutes
 - Duration: 30-60 minutes
- Cisatracurium
 - 1-2 mcg/kg/min IV
 - Onset: 2-3 minutes
 - Duration: 20-30 minutes after IV bolus

Gastric Decompression

Extraglottic Airways/Devices

Image Credits: Michael Gooch

RODS

Patients who may be difficult to place an extraglottic

- Restricted mouth opening
- Obstruction
- Disrupted
- Stiff lungs/c-spine

Delayed Sequence Intubation (DSI)

Weingart (2011)

Use of sedation to facilitate or improve preoxygenation

- NRB
- NiPPV

Once SpO₂ goal reached

- Re-sedate, if needed
- Give NMB agent
- Proceed with intubation

Volume Ventilation

- Assist Control Ventilation (A/C)
 - TV and Rate are set
 - Patients can take spontaneous breaths
 - All breaths trigger the full set TV
 - Patients do best with this mode when sedated and paralyzed
- Synchronized Intermittent Mandatory Ventilation (SIMV)
 - TV and Rate are set
 - Patients can take spontaneous breaths
 - The ventilator attempts to synchronize mandatory breaths with spontaneous breaths
 - Spontaneous breaths do not receive the full set TV
 - This mode is best when patients are not paralyzed or heavily sedated

Pressure Ventilation

- Breaths are delivered based on a set pressure
 - $^\circ~$ Most start at 20 cm $\rm H_2O$
- TV varies with lung compliance
- This mode can reduce incidence of Ventilator Induced Lung Injury
- This mode does not guarantee a set minute ventilation
- Pressure Controlled Ventilation (PC)
 - Delivers an inspiration breath to a set limit
 - RR, Pressure, and inhalation time are set
 - Spontaneous breaths are assisted to reach the set pressure

Tidal Volume (TV)

- 4-8 ml/kg of Ideal Body Weight (IBW)
- Males: IBW = 50 kg + 2.3 kg for each inch over 5 feet
- Females: IBW = 45.5 kg + 2.3 kg for each inch over 5 feet

Peak Inspiratory Pressure (PIP)

- Measurement of the pressure in the lungs at the peak of inspiration
- Set in pressure controlled ventilation
 - $^\circ~$ Should allow a TV of 6 7 mg/kg IBW
- $^\circ~$ In volume controlled ventilation the PIP varies with TV, ~ PEEP, and I time

Rate

Minute Ventilation

- \circ RR x TV
- 5-8 L/min in adults

FiO₂

• Titrate and avoid hyperoxia

Which Settings Address Oxygenation?

Inspiratory : Expiratory Time (I:E Time)

- I time = TV / flow rate
- Normal is 1:2 or 1:3
- Patients with reactive and obstructive airway disease benefit from longer expiratory times

Positive End Expiratory Pressure (PEEP)

- Increases functional reserve capacity (FRC), by recruiting alveoli
- \circ 5-20 cm H₂0

Ventilator Induced Lung Injury (VILI)

Barotrauma

- Causes rupture of the alveoli and migration of air into extrapulmonary spaces
- May be related to high airway pressures
 - Keep plateau pressure < 30 cm H_2O
- Can lead to a pneumothorax

Volutrauma

- Results from high volumes and over distension of the alveoli dynamic hyperinflation
- Results in microvascular injury, impaired surfactant function, and the development of pulmonary edema

Hemodynamic Concerns?

Image Credit: Office 365 P's of RSI

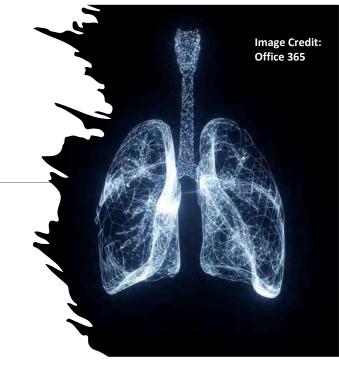
Preparation

Pre-oxygenate

Pre-intubation optimization

Paralysis with Sedation

Positioning


Passing the tube

Proof of placement

Post intubation management

USE A CHECKLIST!

Questions

Contact Info

References

- •Bodily, J. B., Webb, H. R., Weiss, S. J., & Braude, D. A. (2016). Incidence and duration of continuously measured oxygen desaturation during emergency department intubation. *Annals of Emergency Medicine*, *67*(3), 389–395. doi: 10.1016/j.annemergmed.2015.06.006
- •Brown, C. A., Sakles, J. C., Mick, N. W., Mosler, J. M., & Braude, D. A. (2022). The Walls manual of emergency airway management (6th ed.) Wolters Kluwer.
- Davis, D. P., Hwang, J. Q., & Dunford, J. V. (2008). Rate of decline in oxygen saturation at various pulse oximetry values with prehospital rapid sequence intubation. *Prehospital Emergency Care, 12*(1), 46–51. doi: 10.1080/10903120701710470
- •Gooch, M. D. & Roberts, E. (2017). Changing the emergency department's practice of rapid sequence intubation to reduce the incidence of hypoxia. *Advanced Emergency Nursing Journal, 39*(4), 266-279. doi:10.1097/TME.00000000000164
- •Lafferty, K. (2022). Advanced airway management. In T. Campo & K. Lafferty (Eds.), Essential procedures for practitioners in emergency, urgent, and primary care settings (3rd ed.). (pp. 51-88). Springer.

References

•Jarvis, J. L., Gonzales, J., Johns, D., & Sager, L. (2018). Implementation of a clinical bundle to reduce out-of-hospital peri-intubation hypoxia. *Annals of Emergency Medicine*, *72*(3), 272–279.e1. doi:

10.1016/j.annemergmed.2018.01.044

- •Sakles, J. C., et al. (2016). First pass success without hypoxemia is increased with the use of apneic oxygenation during rapid sequence intubation in the emergency department. *Academic Emergency Medicine*, *23*(6), 703–710. doi: 10.1111/acem.12931
- •Weingart, S. D. (2011). Preoxygenation, reoxygenation, and delayed sequence intubation in the emergency department. *Journal of Emergency Medicine*, 40(6), 661–667. doi: 10.1016/j.jemermed.2010.02.014
- •Weingart, S. D., & Levitan, R. M. (2012). Preoxygenation and prevention of desaturation during emergency airway management. *Annals of Emergency Medicine*, *59*(3), 165–75.e1. doi: 10.1016/j.annemergmed.2011.10.002